INTRODUCTION

PSNI

A PROCESS ALGEBRA FOR (DELIMITED) PERSISTENT STOCHASTIC NON-INTERFERENCE

Andrea Marin¹ Carla Piazza² Sabina Rossi¹

¹ Università Ca' Foscari Venezia, Italy

² Università degli Studi di Udine, Italy

CILC 2019 - VALUETOOLS 2019 and QEST 2019

Persistent Stochastic Non-Interference

The Context

- Non-Interference aims at protecting sensitive data from undesired accesses
- Goguen-Meseguer'82: information does not flow from high (confindential) to low (public) if the high behavior cannot be observed at low level
- ► Few results deal with time behaviour and Non-Interference
- Persistency: Non-Interference has to be guaranteed in all the states of the system, if processes migrate during execution

I	N	IТ	R	Ó	D	Ū	C1	ΓT	0	N	
				~	~	~			~		

PSNI

D_PSNI

 C_{PSNI}

CONCLUSION

INTUITIVELY

Delimited Persistent Stochastic Non-Interference

MOTIVATION - I

- Non-Interference could be too demanding. It does not allow any information flow
- Delimited: mechanisms for downgrading or declassifying information from high to low are necessary
- Downgrading of information has to be performed by a trusted component

Delimited Persistent Stochastic Non-Interference

MOTIVATION - II

- Once a process has been designed, it is necessary to check whether it satisfies Delimited Non-Interference or not
- ► If the process is not secure, it is necessary to modify it
- We look for a language which defines only secure processes

Delimited Persistent Stochastic Non-Interference

CONTRIBUTION

- We introduce Persistent Stochastic Non-Interference (PSNI) Delimited Persistent Stochastic Non-Interference (D_PSNI) over Performance Evaluation Process Algebra (PEPA)
- ► We define process algebras for PSNI and D_PSNI processes
- Our process algebras denote equivalence relations that are
 stronger than lumpability (bisimulation)
 linearly verifiable w.r.t. the syntax of the process

INTRODUCTION	PSNI	D_PSNI	C_{PSNI}	Conclusion
--------------	------	--------	------------	------------

OUTLINE OF THE TALK

- Performance Evaluation Process Algebra (PEPA)
- Observation Equivalence: Lumpable Bisimilarity
- Persistent Stochastic Non-Interference (PSNI)
- Delimited Persistent Stochastic Non-Interference (D_PSNI)
- Unwinding and Compositionality: two secure process algebras
- Example and Conclusions

PEPA - Syntax and Semantics

DEFINITION - PEPA SYNTAX Let \mathcal{A} be a set of actions with $\tau \in \mathcal{A}$ Let $\alpha \in \mathcal{A}$, $\mathcal{A} \subseteq \mathcal{A}$, and $r \in \mathbb{R} \cup \{\top\}$

$$S ::= \mathbf{0} | (\alpha, r) \cdot S | S + S | X$$
$$P ::= P \bowtie_A P | P / A | P \setminus A | S$$

Each variable X is associated to a definition $X \stackrel{\text{def}}{=} P$

DEFINITION - PEPA SEMANTICS It defines Labeled Continuous Time Markov Chains

$$\begin{array}{rcl} X_{1} & = & (req_{L}, \rho).X_{2} \\ X_{2} & = & (res_{L}, \mu).X_{1} + (log_{H}, \lambda).X_{3} \\ X_{3} & = & (res_{L}, \mu).X_{1} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PEPA - Semantics for Synchronization

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P \bowtie_{A} Q \xrightarrow{(\alpha,r)} P' \bowtie_{A} Q} (\alpha \notin A) \qquad \frac{Q \xrightarrow{(\alpha,r)} Q'}{P \bowtie_{A} Q \xrightarrow{(\alpha,r)} P \bowtie_{A} Q'} (\alpha \notin A)$$

$$\frac{P \xrightarrow{(\alpha,r_1)} P' \swarrow_{A} Q \xrightarrow{(\alpha,r_2)} Q'}{P \bowtie_{A} Q \xrightarrow{(\alpha,r_2)} P' \bowtie_{A} Q'} (\alpha \in A)$$
where $R = \frac{r_1}{r_{\alpha}(P)} \frac{r_2}{r_{\alpha}(Q)} \min(r_{\alpha}(P), r_{\alpha}(Q))$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Observation Equivalence

LUMPABILITY ON THE CTMC

 $r_{ia} + r_{ib} + r_{id} = r_{jc} + r_{jd}$

Users cannot distinguish lumpable bisimilar PEPA components

▲ 西部 トー ▲ 三 ト

Observation Equivalence

DEFINITION - LUMPABLE BISIMILARITY

It is the largest equivalence relation \approx_I such that if $P \approx_I Q$, then for all α and for each *S* equivalence class

- either $\alpha \neq \tau$,
- or $\alpha = \tau$ and $P, Q \notin S$,

it holds

$$\sum_{P' \in S, P \xrightarrow{(\alpha, r_{\alpha})} P'} r_{\alpha} = \sum_{Q' \in S, Q \xrightarrow{(\alpha, r_{\alpha})} Q'} r_{\alpha}$$

PROPERTIES It is *contextual*, *action preserving*, and induces a *lumpability* D_PSN1

NON-INTERFERENCE

A GENERAL DEFINITION [FOCARDI-GORRIERI'95]

 $P \in NI$ iff \forall high level process H, $(P|0) \sim^{low}(P|H)$

where \sim^{low} denotes a low level observation equivalence

STOCHASTIC NON-INTERFERENCE (SNI)

- We partition the actions into \mathcal{L} (low), \mathcal{H} (high), $\{\tau\}$ (sinch.)
- High level processes can only perform high level actions
- Low level users can only perform/observe low level actions

Definition - SNI

 $P \in SNI$ iff \forall high level PEPA component H $(P \bowtie_{\mathcal{H}} 0) \sim^{low} (P \bowtie_{\mathcal{H}} H)$

LOW LEVEL OBSERVATION \sim^{low} It is \approx_l without observing actions in \mathcal{H}

 $(P \bowtie_{\mathcal{H}} 0)/\mathcal{H} \approx_l (P \bowtie_{\mathcal{H}} H)/\mathcal{H}$

(人間) シスヨン スヨン

PERSISTENT SNI (PSNI)

DEFINITION - PSNI

 $P \in PSNI$ iff \forall derivative P' of P

 $P' \in SNI$

INTRODUCTION	PSNI	D_PSNI	C_{PSNI}	Conclusion

TOY EXAMPLE: UNSECURE VS SECURE SYSTEM

UNSECURE

INTRODUCTION PSNI D_PSNI C_{PSNI} Conclusion

Delimited PSNI (D_PSNI)

- We partition the actions into \mathcal{L} , \mathcal{H} , \mathcal{D} (downgrading), $\{\tau\}$
- Downgrading actions specify the behavior of a trusted component that allows delimited flows from high to low
- Low level users can only perform/observe low level actions

Definition - D_PSNI

 $P \in D_PSNI$ iff \forall derivative P' of P

 \forall high level PEPA component H

 $((P' \bowtie_{\mathcal{H}} 0)/\mathcal{H}) \setminus \mathcal{D} \approx_{l} ((P' \bowtie_{\mathcal{H}} H)/\mathcal{H}) \setminus \mathcal{D}$

EXAMPLE $(P) \xrightarrow{d} (P') \xrightarrow{h} (P'') \xrightarrow{\ell} (0)$

 ${\it P}$ satisfies the condition, while ${\it P}'$ does not

- The d action downgrades the high incoming actions
- It does not downgrade subsequent high actions

... focus on PSNI

Luckily, as for the secure process algebra, D_PSNI is mainly a technical generalization

Theorem - Unwinding

 $P \in PSNI$ iff \forall derivative P' of P,

 $P' \xrightarrow{(h,r)} P''$ implies $P' \setminus \mathcal{H} \approx_l P'' \setminus \mathcal{H}$

 $P' \xrightarrow{(h,r)} P''$ implies $P' \setminus \mathcal{H} \approx_l P'' \setminus \mathcal{H}$

- This allows to explicitly identify the *dangerous* situations
- Whenever a high level action is performed we impose syntactic conditions that ensure ≈_l

PSNI

D_PSNI

・ロト ・回ト ・ヨト ・ヨト

3

21/25

PROPERTIES

THEOREM - COMPOSITIONALITY I

```
Let P, P_i \in PSNI, Q be a PEPA component, and A \subseteq A \setminus \{\tau\}
The following processes are PSNI
```

▶ 0

- $Q \setminus \mathcal{H}, Q \setminus \mathcal{L}, Q/\mathcal{H}, and Q/\mathcal{L}$
- $(\ell, r).P$ with $\ell \in \mathcal{L} \cup \{\tau\}$
- P/A and $P \setminus A$
- $\blacktriangleright P_i \Join_A P_j$

PROPERTIES

THEOREM - COMPOSITIONALITY I

```
Let P, P_i \in PSNI, Q be a PEPA component, and A \subseteq A \setminus \{\tau\}
The following processes are PSNI
```

▶ 0

- $\blacktriangleright Q \setminus \mathcal{H}, Q \setminus \mathcal{L}, Q / \mathcal{H}, \text{ and } Q / \mathcal{L}$
- $(\ell, r).P$ with $\ell \in \mathcal{L} \cup \{\tau\}$
- P/A and $P \setminus A$
- $\blacktriangleright P_i \Join_A P_j$

Remark

These are consequences of PEPA broadcasting synchronization rules and are not true in other process algebra (e.g., CCS like)

CPSNI PROPERTIES THEOREM - COMPOSITIONALITY II Let $P, P_i \in PSNI$, Q be a PEPA component, and $A \subseteq A \setminus \{\tau\}$ \blacktriangleright X_c, X'_c are **PSNI** where $$\begin{split} X_c &\stackrel{\text{def}}{=} \sum_{i \in I} (\ell_i, r_i) . P_i + \sum_{k \in K} (\ell_k, r_k) . X_k + \sum_{j \in J} (h_j, r_j) . X_c \setminus H_j + \sum_{m \in M} (h_m, r_m) . X'_c \\ X'_c &\stackrel{\text{def}}{=} \sum^{i \in I} (\ell_i, r_i) . P_i + \sum^{k \in K} (\ell_k, r_k) . X_k \end{split}$$

<ロ> <回> <回> <回> <三> <三</p>

Properties

CPSNI

THEOREM - COMPOSITIONALITY II Let $P, P_i \in PSNI$, Q be a PEPA component, and $A \subseteq A \setminus \{\tau\}$

• X_c, X'_c are *PSNI* where

$$X_{c} \stackrel{\text{def}}{=} \sum_{i \in I} (\ell_{i}, r_{i}) \cdot P_{i} + \sum_{k \in K} (\ell_{k}, r_{k}) \cdot X_{k} + \sum_{j \in J} (h_{j}, r_{j}) \cdot X_{c} \setminus H_{j} + \sum_{m \in M} (h_{m}, r_{m}) \cdot X_{c}'$$
$$X_{c}' \stackrel{\text{def}}{=} \sum_{i \in I} (\ell_{i}, r_{i}) \cdot P_{i} + \sum_{k \in K} (\ell_{k}, r_{k}) \cdot X_{k}$$

Remark

- This is a trade-off between readability and expressivity
- How much can we improve? See Some of My Favourite Results in Classic Process Algebra by L. Aceto

PSNI PROCESS ALGEBRA

DEFINITION - C_{PSNI}

Let Q be PEPA component and $A \subseteq A \setminus \{\tau\}$ C_{PSNI} is defined by the following grammar:

$$S ::= \mathbf{0} \mid Q \setminus \mathcal{H} \mid Q \setminus \mathcal{L} \mid (\ell, r).S \mid X$$
$$P ::= S \mid P/A \mid P \setminus A \mid P \bowtie_A P$$

where X has a recursive definition of the form

$$X \stackrel{\text{def}}{=} \sum_{i \in I} (\ell_i, r_i) . S_i + \sum_{j \in J} (h_j, r_j) . X \setminus H_j + \sum_{m \in M} (h_m, r_m) . X'$$
$$X' \stackrel{\text{def}}{=} \sum_{i \in I} (\ell_i, r_i) . S_i$$

イロト イポト イヨト イヨト

PSNI PROCESS ALGEBRA

DEFINITION - C_{PSNI}

Let *Q* be PEPA component and $A \subseteq A \setminus \{\tau\}$ C_{PSNI} is defined by the following grammar:

$$S ::= \mathbf{0} \mid Q \setminus \mathcal{H} \mid Q \setminus \mathcal{L} \mid (\ell, r).S \mid X$$
$$P ::= S \mid P/A \mid P \setminus A \mid P \bowtie_A P$$

where X has a recursive definition of the form

$$\begin{array}{l} X \stackrel{def}{=} \sum_{i \in I} (\ell_i, r_i) . S_i + \sum_{j \in J} (h_j, r_j) . X \setminus H_j + \sum_{m \in M} (h_m, r_m) . X' \\ X' \stackrel{def}{=} \sum_{i \in I} (\ell_i, r_i) . S_i \end{array}$$

Remark

- We can also define infinite state processes
- We can generalize to a process algebra for D_PSNI

Toy Examples: C_{PSNI} Systems

- ► A general framework for PSNI and D_PSNI has been presented
- The use of Contextual Lumpability guarantees that the steady state distribution is not influenced by the high level behavior
- Two process algebras that allow to define processes secure by construction have been introduced

QUESTIONS

- Can we find a complete process algebra?
- How is it related to efficient computation of lumpability/bisimulation?