Proving Properties of Sorting Programs: A Case Study in Horn Clause Verification

E. De Angelis1, F. Fioravanti1, A. Pettorossi2, and M. Proietti3

1University of Chieti-Pescara `G. d'Annunzio'
2University of Rome `Tor Vergata'
3CNR - Istituto di Analisi dei Sistemi ed Informatica
Overview

Problem
Verifying properties of functional programs on recursive datatypes

Our approach
• Translating program properties into Constrained Horn Clauses (CHCs) on recursive datatypes
• Transforming CHCs on recursive datatypes into equisatisfiable CHCs on integers and booleans

Case study: Verification of
• linear recursive
• non-linear recursive sorting programs
Functional programs on recursive datatypes

- Statically typed, call-by-value, FO functional language (OCaml)
- Computing the \textit{sum} (\texttt{listsum}) and the \textit{maximum} (\texttt{listmax}) of the \textit{absolute values} (\texttt{abs}) of the elements of a list:

```ocaml
type list = Nil | Cons of int * list;;

let rec listsum l = match l with
  | Nil -> 0
  | Cons(x, xs) -> (abs x) + listsum xs;;

let rec listmax l = match l with
  | Nil -> 0
  | Cons(x, xs) -> let m = listmax xs in max (abs x) m;;
```

\textbf{Property:} \(\forall l. \texttt{listsum}l \geq \texttt{listmax}l \)
The property holds iff the clauses are **satisfiable**; Indeed these clauses are satisfiable but models are **infinite** disjunctions:

- listsum(L,S) :- (L=[], S=0) ; (L=[X], abs(X,S)) ;
 (L=[X,Y], abs(X,A), abs(Y,B), S=A+B); ...

- listmax(L,M) :- (L=[], M=0) ; (L=[A], abs(X,M)) ;
 (L=[X,Y], abs(X,A), abs(Y,B), max(A,B,M)); ...

CHC solvers (Eldarica, Z3) over the quantifier-free Theory of Lists and Linear Integer Arithmetic (LIA) **cannot solve** them (i.e., construct a model)
Solving CHCs on Recursive Datatypes
(to find a model for the derived CHCs)

- **Approach 1:**
 Extend CHC solving by *induction principles*:
 [Reynolds-Kuncak 2015, Unno-Torii-Sakamoto 2017].

- **Approach 2** (this talk):
 Transform CHCs on recursive datatypes into equisatisfiable CHCs *without recursive datatypes* (e.g., on integers and booleans only).
 [Mordvinov-Fedyukovich 2017, De Angelis et al. 2018]

Transformations inspired by techniques for eliminating inductive data structures:
Deforestation [Wadler ‘88], Unnecessary Variable Elimination by Unfold/Fold [PP ‘91], Conjunctive Partial Deduction + Redundant Argument Filtering [DeSchreye et al. ‘99]
Recursive Datatype Elimination Algorithm

false :- S<M, listsum(L,S), listmax(L,M). % L existential list

Define a new predicate
list-sum-max(S,M) :- listsum(L,S), listmax(L,M).

Unfold
list-sum-max(S,M) :- S=0, M=0.
list-sum-max(S,M) :- S=S1+A, abs(X,A), max(A,M1,M),
 listsum(L',S1), listmax(L',M1).

Fold (eliminate lists)
false :- S<M, list-sum-max(S,M).
list-sum-max(S,M) :- S=0, M=0.
list-sum-max(S,M) :- S=S1+A, abs(X,A), max(A,M1,M),
 list-sum-max(S1,M1).
Solving CHCs on LIA

Equisatisfiability guaranteed by fold/unfold rules.
No infinite models and are needed to show satisfiability.
Solved by Eldarica without induction rules.

LIA-definable model (CLP syntax used by Eldarica):

```
false :- S<M, list-sum-max(S,M).
list-sum-max(S,M) :- S=0, M=0.
list-sum-max(S,M) :- S=S1+A,
    abs(X,A), max(A,M1,M), list-sum-max(S1,M1).
```

```
list-sum-max(S,M) :- S>=M, M>=0.
```
Insertion Sort & Permutation property

```ml
type list = Nil | Cons of int * list;;

let rec iSort l = match l with
  | Nil -> Nil
  | Cons(x,xs) -> ins x (iSort xs);;

let rec ins x l = match l with
  | Nil -> Cons(x,Nil)
  | Cons(y,ys) -> if x<=y then Cons(x,Cons(y,ys))
  else Cons(y,ins x ys);;

let rec count x l = match l with
  | Nil -> 0
  | Cons(y,ys) -> if x=y then 1 + count x ys else count x ys;;
```

Property: l and s have the same elements (counting elements of l,s).

∀ l,s,x,n1,n2. (count x l = n1) ∧ (iSort l = s) ∧ (count x s = n2) → n1=n2
Translation into CHCs

Insertion Sort

false :- N1=\=N2, count(X,L,N1), iSort(L,S), count(X,S,N2).

ins(A, [], [A]).
ins(A, [X|Xs], [A,X|Xs]) :- A=<X.
ins(A, [X|Xs], [X|Ys]) :- A>X, ins(A,Xs,Ys).

iSort([], []).
iSort([X|Xs], S) :- iSort(Xs, S1), ins(X, S1, S).

count(X, [], 0).
count(X, [H|T], N) :- X=H, N=M+1, count(X, T, M).
count(X, [H|T], N) :- X=\=H, count(X, T, N).

CHC solvers (Eldarica, Z3) over the quantifier-free theory of lists and Linear Integer Arithmetic (LIA) cannot solve these clauses.
Recursive Datatype Elimination Algorithm

Insertion Sort

false :- N1=\=N2, count(X,L,N1), iSort(L,S), count(X,S,N2).

define a new predicate new1

new1(X,N1,N2) :- count(X,L,N1), iSort(L,S), count(X,S,N2).

Do NOT occur in the head of the new definition

existential lists
Insertion Sort: I’d like to remove those lists, but I can’t due to a **DIFFERENCE** in ...

Definition of new1

\[
\text{new1}(X', N1', N2') : - \quad \text{count}(X', L', N1'), \text{iSort}(L', S'), \text{count}(X', S', N2').
\]

Unfolding of new1

\[
\text{new1}(X, 0, 0).
\]

\[
\text{new1}(X, N1, M) : - N1=N+1, \text{count}(X, L, N), \text{iSort}(L, S), \text{ins}(X, S, T), \text{count}(X, T, M).
\]

\[
\text{new1}(X, N1, M) : - X=\leq Y, \text{count}(X, L, N1), \text{iSort}(L, S), \text{ins}(Y, S, T), \text{count}(X, T, M).
\]

Folding is not possible (The Elimination Algorithm does not terminate)

New idea of this work:

Match; Introduce “DIFFERENCE” predicates; Replace; Fold
Insertion Sort: Match

Match clause to be folded **against definition**

Define

\[
\text{new1}(X', N', M') : \leftarrow \text{count}(X', L', N'), \text{iSort}(L', S'), \text{count}(X', S', M').
\]

Unfold

\[
\text{new1}(X, N1, M) : \leftarrow N1 = N + 1, \text{count}(X, L, N), \text{iSort}(L, S), \text{ins}(X, S, T), \text{count}(X, T, M).
\]

Substitution: \{L/L', S/S', X/X', N/N'\}
Insertion Sort: Match

Match clause to be folded **against** definition

Define

\[
\text{new1}(X', N', M') : \text{-} \text{count}(X', L', N'), \text{iSort}(L', S'), \text{count}(X', S', M').
\]

Unfold

\[
\text{new1}(X, N_1, M) : -N_1 = N + 1, \text{count}(X', L', N'), \text{iSort}(L', S'), \text{ins}(X', S', T), \text{count}(X', T, M).
\]

"We WANT"

"We HAVE"
Insertion Sort: DIFFERENCE predicate

Introduce DIFFERENCE predicate

Difference between clause to be folded ("We HAVE") and the definition ("We WANT")

Define

\[\text{new1}(X', N', M') :- \text{count}(X', L', N'), \text{iSort}(L', S'), \text{count}(X', S', M'). \]

Unfold

\[\text{new1}(X', N1, M) :- N1 = N' + 1, \text{count}(X', L', N'), \text{iSort}(L', S'), \text{ins}(X', S', T), \text{count}(X', T, M'). \]

Define

\[\text{diff1}(X', M, M') :- \text{ins}(X', S', T), \text{count}(X', T, M), \text{count}(X', S', M'). \]
Insertion Sort: Replace

- **Replace** $\text{ins}(X', S', T), \text{count}(X', T, M)$
 by $\text{count}(X', S', M'), \text{diff1}(X', M', M)$
 ("We HAVE")

- **Define**

 $\text{new1}(X', N', M') \leftarrow \text{count}(X', L', N'), \text{iSort}(L', S'), \text{count}(X', S', M').$

- **Unfold**

 $\text{new1}(X', N1, M) \leftarrow N1 = N' + 1, \text{count}(X', L', N'), \text{iSort}(L', S'), \text{ins}(X', S', T), \text{count}(X', T, M).$

- **Replace**

 $\text{new1}(X', M', M) \leftarrow N1 = N' + 1, \text{count}(X', L', N'), \text{iSort}(L', S'), \text{count}(X', S', M'), \text{diff1}(X', M', M).$

- **MATCH**

- **MISMATCH**
Correctness of Replacement

Replace \(\text{ins}(X', S', T), \text{count}(X', T, M) \) ("We HAVE")
by \(\text{count}(X', S', M''), \text{diff1}(X', M', M) \) ("We WANT")

Suppose \(\text{Cls \ U \ \{C\} \rightarrow \text{Cls \ U \ \{D\}} \) by replacement.
If \(\text{diff1} \) is a function then \(\text{Cls \ U \ \{C\}} \) is SAT IFF \(\text{Cls \ U \ \{D\}} \) is SAT.
Otherwise, \(\text{Cls \ U \ \{C\}} \) is SAT IF \(\text{Cls \ U \ \{D\}} \) is SAT.
Insertion Sort: Fold

Define

\[
\text{new1}(X', N', M') \leftarrow \text{count}(X', L', N'), \text{iSort}(L', S'), \text{count}(X', S', M').
\]

Unfold

\[
\text{new1}(X', N_1, M) \leftarrow N_1 = N + 1, \text{count}(X', L', N'), \text{iSort}(L', S'), \text{ins}(X', S', T), \text{count}(X', T, M).
\]

Replace

\[
\text{new1}(X', M', M) \leftarrow N_1 = N + 1, \text{count}(X', L', N'), \text{iSort}(L', S'), \text{count}(X', S', M'), \text{diff1}(X', M', M).
\]

Fold

\[
\text{new1}(X', M', M) \leftarrow N_1 = N + 1, \text{new1}(X', N', M'), \text{diff1}(X', M', M).
\]
Insertion Sort: final set of CHCs w/o lists

false :- N1=\=N2, new1(X,N1,N2).
new1(X,0,0).
new1(X,N1,N2) :- N1=N1’+1, new1(X’,N1’,N2’), diff1(X’,N2’,N2).
new1(X,N1,N2) :- X=\=Y, new1(Y,N1,N2b), diff2(X,Y,N2b,N2).
 diff1(X,0,1).
 diff1(X,N1,N2) :- N2=M2+1, N1=M1+1, new3(X,M2,M1).
 diff1(X,N1,N2) :- X=<Y, N2=N+1, X=\=Y, new4(X,Y,N,N1).
 diff2(X,Y,0,0) :- Y=\=X.
 diff2(X,Y,M,N) :- X=<Y, Y=\=X, M=K+1, new3(Y,N,K).
 diff2(X,Y,M,N) :- X=<Z, Y=\=X, Y=\=Z, N=M, new5(Y,N).
 diff2(X,Y,M,N) :- X>Y, N=H+1, M=K+1, diff2(X,Y,K,H).
new3(X,N1,N) :- N1=N+1, new5(X,N).
new4(X,Y,N,N) :- X=<Y, X=\=Y, new5(X,N).
new5(X,0).
new5(X,N1) :- N1=N+1, new5(X,N).

diff2 is a difference predicate:
diff2(X,Y,N,M):-X=\=Y, ins(X,S1,S), count(Y,S,M), count(Y,S1,N).
Eldarica proves satisfiability by computing a LIA-definable model (rewritten for legibility):

\[
\begin{align*}
\text{false} & : - \ N1=\neq N2, \ N1=N2, \ N2\geq 0. \\
\text{new1}(A,B,C) & : - B=C, \ B\geq 0. \\
\text{new2}(A,B) & : - B = 0. \\
\text{diff1}(A,B,C) & : - B\geq 0, \ C=B+1. \quad \% \text{diff1 is a function} \\
\text{diff2}(A,B,C,D) & : - C\geq 0, \ D=C. \quad \% \text{diff2 is a function} \\
\text{new3}(A,B,C) & : - C=B-1, \ B\geq 1. \\
\text{new4}(A,B,C,D) & : - D=C, \ C\geq 0, \ B\geq A+1. \\
\text{new5}(A,B) & : - B\geq 0.
\end{align*}
\]

Difference predicates are functions.
Thus, the initial and transformed clauses are equisatisfiable.
Difference Predicates and Lemma Discovery

Eldarica model of difference predicates

diff1(X',N2',N2) :- N2=N2'+1, N2'>=0.
diff2(X,Y,N2',N2) :- N2=N2', N2'>=0.

Difference predicates correspond to lemmata in a proof by structural induction

diff1(X',N2',N2):- ins(X',S',S),count(X',S,N2),count(X',S',N2').
diff2(X,Y,N2',N2):- X\ne Y,ins(X,S1,S),count(Y,S,N2),count(Y,S1,N2').

can be rewritten as

\(\forall ((\text{count } X' (\text{ins } X' S') = N2) \land (\text{count } X' S' = N2') \rightarrow N2=N2'+1 \land N2'>=0) \)

\(\forall (X\ne Y \land (\text{count } Y (\text{ins } X S1) = N2) \land (\text{count } Y S1 = N2') \rightarrow N2=N2' \land N2'>=0) \)
More Sorting Programs and Properties

- Transformations done using the MAP interactive system
- Satisfiability proof and model computation done by Eldarica

<table>
<thead>
<tr>
<th></th>
<th>Permutation</th>
<th>Ordered</th>
<th>Length</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsertionSort</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SelectionSort</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>QuickSort</td>
<td>✓</td>
<td>X</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>MergeSort</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ Transformation & Model Computation succeeded
✓ We stopped the transformation
Blank We did not try
Conclusions

- CHC transformations aid verification of programs that manipulate recursive datatypes.

- In the sorting examples, the Elimination Algorithm + Difference Predicate Intro transforms non-solvable (by CHC solvers) CHCs into equisatisfiable solvable CHCs.

- CHC solving < (Transformation; CHC solving) ~ (Induction + CHC solving)

- Advantage of the transformation-based approach: separation of inductive reasoning (by transformation) from CHC solving.

- Ongoing work:
 - Automation (some work done)
 - Benchmarking: compare with Inductive Theorem Provers (e.g., ACL2, Clam, Leon, Isabelle)