PEAR: a Tool for Reasoning About Scenarios and Probabilities in Description Logics of Typicality

Gian Luca Pozzato and Gabriele Soriano

Dipartimento di Informatica, Università degli Studi di Torino, Italy

CILC 2019
Outline

- Extensions of DLs with Typicality and Probabilities:
 - Reasoning about ABox facts with probabilities of exceptions
 - PEAR: a reasoner for DL + T + probabilities
Description Logics

Important formalisms of knowledge representation

Two key advantages:
- well-defined semantics based on first-order logic
- good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

Knowledge bases

Two components:
- TBox: inclusion relations among concepts
- ABox: instances of concepts and roles, i.e. properties and relations among individuals
Description Logics

Important formalisms of knowledge representation

Two key advantages:
- well-defined semantics based on first-order logic
- good trade-off between expressivity and complexity

at the base of languages for the semantic (e.g. OWL)

Knowledge bases

Two components:
- **TBox**= inclusion relations among concepts
 - *Dog* ⊑ *Mammal*
- **ABox**= instances of concepts and roles = properties and relations among individuals
 - *Dog*(saki)
Description Logics

Important formalisms of knowledge representation

Two key advantages:
- well-defined semantics based on first-order logic
- good trade-off between expressivity and complexity

at the base of languages for the semantic (e.g. OWL)

Knowledge bases

Two components:
- **TBox** = inclusion relations among concepts
 - $Dog \sqsubseteq Mammal$
- **ABox** = instances of concepts and roles = properties and relations among individuals
 - $Dog(saki)$
Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

Knowledge bases

- Two components:
 - TBox = inclusion relations among concepts
 - Dog \subseteq Mammal
 - ABox = instances of concepts and roles = properties and relations among individuals
 - Dog(saki)
Extensions of DLs

DLs with nonmonotonic features

- need of representing prototypical properties and of reasoning about defeasible inheritance
- handle defeasible inheritance needs the integration of some kind of nonmonotonic reasoning mechanism
 - DLs + MKNF
 - DLs + circumscription
 - DLs + default
- all these methods present some difficulties ...
What are they?

- (with Laura Giordano, V. Gliozzi, N. Olivetti)
- Non-monotonic extensions of Description Logics for reasoning about prototypical properties and inheritance with exceptions
 - Basic idea: to extend DLs with a typicality operator T
 - $T(C)$ singles out the “most normal” instances of the concept C
 - semantics of T defined by a set of postulates that are a restatement of Lehmann-Magidor axioms of rational logic R

Basic notions

- A KB comprises assertions $T(C) \sqsubseteq D$
- $T(Dog) \sqsubseteq Affectionate$ means “normally, dogs are affectionate”
- T is nonmonotonic
 - $C \sqsubseteq D$ does not imply $T(C) \sqsubseteq T(D)$
DLs with typicality

What are they?

- (with Laura Giordano, V. Gliozzi, N. Olivetti)
- Non-monotonic extensions of Description Logics for reasoning about prototypical properties and inheritance with exceptions
 - Basic idea: to extend DLs with a typicality operator \(T \)
 - \(T(C) \) singles out the “most normal” instances of the concept \(C \)
 - semantics of \(T \) defined by a set of postulates that are a restatement of Lehmann-Magidor axioms of rational logic \(R \)

Basic notions

- A KB comprises assertions \(T(C) \subseteq D \)
- \(T(Dog) \subseteq Affectionate \) means “normally, dogs are affectionate”
- \(T \) is nonmonotonic
 - \(C \subseteq D \) does not imply \(T(C) \subseteq T(D) \)
The logic $\text{ALC} + T_{\text{min}}$

Example

$$ T(Pig) \sqsubseteq \neg \text{FireBreathing} $$

$$ T(Pig \sqcap Pokemon) \sqsubseteq \text{FireBreathing} $$

Reasoning

- ABox:

 $\text{Pig}(\text{tepig})$

- Expected conclusions:

 $\neg \text{FireBreathing}(\text{tepig})$
The logic $\text{ALC} + T_{\text{min}}$

Example

$T(\text{Pig}) \sqsubseteq \neg \text{FireBreathing}$

$T(\text{Pig} \sqcap \text{Pokemon}) \sqsubseteq \text{FireBreathing}$

Reasoning

- **ABox:**
 - $\text{Pig}(\text{tepig})$

- **Expected conclusions:**
 - $\neg \text{FireBreathing}(\text{tepig})$
The logic $\text{ALC} + T_{\text{min}}$

Example

$T(\text{Pig}) \sqsubseteq \neg \text{FireBreathing}$

$T(\text{Pig} \sqcap \text{Pokemon}) \sqsubseteq \text{FireBreathing}$

Reasoning

- ABox:
 - $\text{Pig}(\text{tepig})$
- Expected conclusions:
 - $\neg \text{FireBreathing}(\text{tepig})$
The logic $\text{ALC} + T_{\text{min}}$

Example

$T(\text{Pig}) \sqsubseteq \neg \text{FireBreathing}$

$T(\text{Pig} \sqcup \text{Pokemon}) \sqsubseteq \text{FireBreathing}$

Reasoning

- **ABox:**
 - $\text{Pig}(\text{tepig}), \text{Pokemon}(\text{tepig})$
- **Expected conclusions:**
 - $\text{FireBreathing}(\text{tepig})$
The logic $\mathcal{ALC} + T$

Semantics

- $\mathcal{M} = \langle \Delta^I, <, .^I \rangle$
 - additional ingredient: preference relation among domain elements
 - $<$ is an irreflexive, transitive, modular and well-founded relation over Δ^I:
 - for all $S \subseteq \Delta^I$, for all $x \in S$, either $x \in Min_<(S)$ or $\exists y \in Min_<(S)$ such that $y < x$
 - $Min_<(S) = \{ u : u \in S \text{ and } \nexists z \in S \text{ s.t. } z < u \}$
 - Semantics of the T operator: $(T(C))^I = Min_<(C^I)$
Weakness of monotonic semantics

Logic $\mathcal{ALC} + T$

- The operator T is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

Example

- In the KB of the previous slides:
 - if Pig(tepig) ∈ ABox, we are not able to
Weakness of monotonic semantics

Logic $\mathcal{ALC} + T$
- The operator T is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

Example
- in the KB of the previous slides:
 - if $Pig(tepig) \in ABox$, we are not able to:
 - assume that $T(Pig)(tepig)$
 - infer that $\neg FireBreathing(tepig)$
Weakness of monotonic semantics

Logic $\mathcal{ALC} + T$
- The operator T is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

Example
- in the KB of the previous slides:
 - if $Pig(tepig) \in ABox$, we are not able to:
 - assume that $T(Pig)(tepig)$
 - infer that $\neg FireBreathing(tepig)$
The nonmonotonic logic $\text{ALC} + T_{\text{min}}$

Rational closure

- Preference relation among models of a KB
 - $\mathcal{M}_1 < \mathcal{M}_2$ if \mathcal{M}_1 contains less exceptional (not minimal) elements
 - \mathcal{M} minimal model of KB if there is no \mathcal{M}' model of KB such that $\mathcal{M}' < \mathcal{M}$

- Minimal entailment
 - $\text{KB} \models_{\text{min}} F$ if F holds in all minimal models of KB

- Nonmonotonic logic
 - $\text{KB} \models_{\text{min}} F$ does not imply $\text{KB}' \models_{\text{min}} F$ with $\text{KB}' \supset \text{KB}$

- Corresponds to a notion of rational closure of KB
Rational closure

- Preference relation among models of a KB
 - $\mathcal{M}_1 < \mathcal{M}_2$ if \mathcal{M}_1 contains less exceptional (not minimal) elements
 - \mathcal{M} minimal model of KB if there is no \mathcal{M}' model of KB such that $\mathcal{M}' < \mathcal{M}$

- Minimal entailment
 - $\text{KB} \models_{\text{min}} F$ if F holds in all minimal models of KB

- Nonmonotonic logic
 - $\text{KB} \models_{\text{min}} F$ does not imply $\text{KB}' \models_{\text{min}} F$ with $\text{KB}' \supset \text{KB}$

- Corresponds to a notion of rational closure of KB
The nonmonotonic logic $\text{ALC} + T_{\text{min}}$

Rational closure

- Preference relation among models of a KB
 - $M_1 < M_2$ if M_1 contains less exceptional (not minimal) elements
 - M minimal model of KB if there is no M' model of KB such that $M' < M$

- Minimal entailment
 - $\text{KB} \models_{\text{min}} F$ if F holds in all *minimal* models of KB

- Nonmonotonic logic
 - $\text{KB} \models_{\text{min}} F$ does not imply $\text{KB'} \models_{\text{min}} F$ with $\text{KB'} \supset \text{KB}$

- Corresponds to a notion of rational closure of KB
DLs + T and probabilities

Introduction

- In the non-monotonic DL, all typicality assumptions that are consistent with the KB can be inferred.
- Counterintuitive, especially if we have hundreds of instances.
 - They are all typical dogs!!!!
DLs + T and probabilities

Introduction

- in the non-monotonic DL, all typicality assumptions that are consistent with the KB can be inferred
- counterintuitive, especially if we have hundreds of instances
 - they are all typical dogs!!!!
Introduction

- $\mathcal{ALC} + T^P$: extension of \mathcal{ALC} by typicality inclusions equipped by probabilities of exceptionality
- $T(C) \sqsubseteq_p D$, where $p \in (0, 1)$
- Intuitive meaning: normally, Cs are Ds, and the probability of having exceptional Cs not being Ds is $1 - p$

Example

$T(Student) \sqsubseteq_{0.3} SportLover$

$T(Student) \sqsubseteq_{0.9} SocialNetworkUser$

- Sport lovers and social network users are both typical properties of students
- Probability of not having exceptions is 30% and 90%, respectively
Basic idea

- extensions of an ABox containing only some of the “plausible” typicality assertions of the rational closure of KB
 - each extension represents a scenario having a specific probability
 - probability distribution among scenarios
 - nonmonotonic entailment restricted to extensions whose probabilities belong to a given and fixed range
 - reason about scenarios that are not necessarily the most probable
DLs + T and probabilities

Extensions of ABox

- typicality assumptions $\mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n)$ inferred from $\mathcal{ALC} + \mathbf{T}_{min}$
- extensions of ABox obtained by choosing some typicality assumptions
 - $\widetilde{\mathcal{A}}_1 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_2 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\widetilde{\mathcal{A}}_3 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_4 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - \ldots
- reasoning in the monotonic $\mathcal{ALC} + T$ considering TBox and ABox extended with chosen assumptions
DLs + T and probabilities

Extensions of ABox

- typicality assumptions $T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)$ inferred from $\mathcal{ALC} + T_{min}$
- extensions of ABox obtained by choosing some typicality assumptions
 - $\widetilde{A}_1 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - $\widetilde{A}_2 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - $\widetilde{A}_3 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - $\widetilde{A}_4 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - \ldots

- reasoning in the monotonic $\mathcal{ALC} + T$ considering TBox and ABox extended with chosen assumptions
DLs + T and probabilities

Extensions of ABox

- typicality assumptions $T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)$ inferred from $ALC + T_{min}$
- extensions of ABox obtained by choosing some typicality assumptions
 - $\widehat{A}_1 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - $\widehat{A}_2 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - $\widehat{A}_3 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - $\widehat{A}_4 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - \ldots

- reasoning in the monotonic $ALC + T$ considering TBox and ABox extended with chosen assumptions
DLs + T and probabilities

Extensions of ABox

- typicality assumptions $\mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n)$ inferred from $\mathcal{ALC} + T_{min}$
- extensions of ABox obtained by choosing some typicality assumptions
 - $\widetilde{\mathcal{A}}_1 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\widetilde{\mathcal{A}}_2 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\widetilde{\mathcal{A}}_3 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\widetilde{\mathcal{A}}_4 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - \ldots
- reasoning in the monotonic $\mathcal{ALC} + T$ considering TBox and ABox extended with chosen assumptions
Extensions of ABox

- typicality assumptions $T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)$ inferred from $\mathcal{ALC} + T_{\text{min}}$
- extensions of ABox obtained by choosing some typicality assumptions
 - $\widetilde{A}_1 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\widetilde{A}_2 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\widetilde{A}_3 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\widetilde{A}_4 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - \ldots

- reasoning in the monotonic $\mathcal{ALC} + T$ considering TBox and ABox extended with chosen assumptions
DLs + T and probabilities

Extensions of ABox

- typicality assumptions $\mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n)$ inferred from $\mathcal{ALC} + T_{\min}$
- extensions of ABox obtained by choosing some typicality assumptions
 - $\widetilde{A}_1 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\widetilde{A}_2 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\widetilde{A}_3 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\widetilde{A}_4 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - \ldots

- reasoning in the monotonic $\mathcal{ALC} + T$ considering TBox and ABox extended with chosen assumptions
Extensions of ABox and probabilities

\[T(C) \sqsubseteq 0.3 \quad D \]
\[T(C) \sqsubseteq 0.7 \quad E \]
\[T(F) \sqsubseteq 0.8 \quad G \]
\[T(C) \sqsubseteq 0.5 \quad H \]
Extensions of ABox and probabilities

\[T(C) \sqsubseteq 0.3 \quad D \]
\[T(C) \sqsubseteq 0.7 \quad E \]
\[T(F) \sqsubseteq 0.8 \quad G \]
\[T(C) \sqsubseteq 0.5 \quad H \]
Extensions of ABox and probabilities

\[
\begin{align*}
T(C) & \sqsubseteq_{0.3} D \\
T(C) & \sqsubseteq_{0.7} E \\
T(F) & \sqsubseteq_{0.8} G \\
T(C) & \sqsubseteq_{0.5} H
\end{align*}
\]

\[0.3 \times 0.7 \times 0.5\]
Extensions of ABox and probabilities

\[
\begin{align*}
T(C) & \sqsubseteq 0.3 \quad D \\
T(C) & \sqsubseteq 0.7 \quad E \\
T(F) & \sqsubseteq 0.8 \quad G \\
T(C) & \sqsubseteq 0.5 \quad H
\end{align*}
\]

\[
\begin{align*}
T(C)'(a) & \quad T(F)(a) & \quad T(C)(b) \\
0.3 \times 0.7 \times 0.5 & = 0.105
\end{align*}
\]
Extensions of ABox and probabilities

\[T(C) \subseteq_{0.3} D \]
\[T(C) \subseteq_{0.7} E \]
\[T(F) \subseteq_{0.8} G \]
\[T(C) \subseteq_{0.5} H \]

\[0.3 \times 0.7 \times 0.5 \]

\[T(C)(a) \quad T(F)(a) \quad T(C)(b) \]

\[0.105 \]
Extensions of ABox and probabilities

\[T(C) \sqsubseteq_{0.3} D \]
\[T(C) \sqsubseteq_{0.7} E \]
\[T(F) \sqsubseteq_{0.8} G \]
\[T(C) \sqsubseteq_{0.5} H \]

\[0.3 \times 0.7 \times 0.5 \]

\[0.105 \]

\[0.8 \]
Extensions of ABox and probabilities

\[T(C) \subseteq 0.3 \quad D \]
\[T(C) \subseteq 0.7 \quad E \]
\[T(F) \subseteq 0.8 \quad G \]
\[T(C) \subseteq 0.5 \quad H \]

\[T(C) \quad (a) \quad T(F) \quad (a) \quad T(C) \quad (b) \]

\[0.3 \times 0.7 \times 0.5 \]

\[0.105 \quad 0.8 \]
Extensions of ABox and probabilities

\[
\begin{align*}
T(C) \subseteq_0.3 & \quad D \\
T(C) \subseteq_0.7 & \quad E \\
T(F) \subseteq_0.8 & \quad G \\
T(C) \subseteq_0.5 & \quad H
\end{align*}
\]

\[
\begin{align*}
0.3 \times 0.7 \times 0.5 & \quad 0.105 & \quad 0.8 & \quad 0.105
\end{align*}
\]
Extensions of ABox and probabilities

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(C) \sqsubseteq 0.3$</td>
<td>D</td>
</tr>
<tr>
<td>$T(C) \sqsubseteq 0.7$</td>
<td>E</td>
</tr>
<tr>
<td>$T(F) \sqsubseteq 0.8$</td>
<td>G</td>
</tr>
<tr>
<td>$T(C) \sqsubseteq 0.5$</td>
<td>H</td>
</tr>
</tbody>
</table>

- $T(C)(a)$: 0.105
- $T(F)(a)$: 0.8
- $T(C)(b)$: 0.105

- $0.3 \times 0.7 \times 0.5$
Extensions of ABox and probabilities

\[
\begin{align*}
\mathbf{T}(C) \subseteq & 0.3 \quad D \\
\mathbf{T}(C) \subseteq & 0.7 \quad E \\
\mathbf{T}(F) \subseteq & 0.8 \quad G \\
\mathbf{T}(C) \subseteq & 0.5 \quad H \\
\end{align*}
\]

\begin{align*}
\mathbf{T}(C)(a) & \quad \mathbf{T}(F)(a) & \quad \mathbf{T}(C)(b) \\
0.105 & \quad 0.8 & \quad 0.105 \\
0.3 \times 0.7 \times 0.5 & \\
\end{align*}

\[
\begin{align*}
\mathbf{A}_1 & \quad \mathbf{T}(C)(a) & \quad \mathbf{T}(F)(a) & \quad \mathbf{T}(C)(b) \\
[0.105, 0.8, 0.105] & \\
\end{align*}
\]
Extensions of ABox and probabilities

\[
\begin{align*}
\text{T}(C) & \equiv 0.3 \ D \\
\text{T}(C) & \equiv 0.7 \ E \\
\text{T}(F) & \equiv 0.8 \ G \\
\text{T}(C) & \equiv 0.5 \ H
\end{align*}
\]

\[
\begin{array}{c|ccc}
 & \text{T}(C)(a) & \text{T}(F)(a) & \text{T}(C)(b) \\
\hline
\text{T}(C) & 0.105 & 0.8 & 0.105 \\
0.3 \times 0.7 \times 0.5 & \end{array}
\]

\[
\begin{align*}
[0.105, 0.8, 0.105] & \\
[0.105, 0, 0]
\end{align*}
\]

\[
\begin{align*}
\tilde{A}_1 & \\
\tilde{A}_2
\end{align*}
\]
Extensions of ABox and probabilities

<table>
<thead>
<tr>
<th></th>
<th>$T(C)$</th>
<th>$T(F)(a)$</th>
<th>$T(C)(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.105</th>
<th>0.8</th>
<th>0.105</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ABox</th>
<th>$T(C)$</th>
<th>$T(F)(a)$</th>
<th>$T(C)(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$T(C)(a)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td>$T(C)(a)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td>$T(C)(a)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.105</th>
<th>0.8</th>
<th>0.105</th>
</tr>
</thead>
</table>

A_1	$T(C)(a)$	$T(F)(a)$	$T(C)(b)$
A_2	$T(C)(a)$	$T(F)(a)$	$T(C)(b)$
A_3	$T(C)(a)$	$T(F)(a)$	$T(C)(b)$
Extensions of ABox and Probabilities

<table>
<thead>
<tr>
<th>Condition</th>
<th>Typicality</th>
<th>T(C)(a)</th>
<th>T(F)(a)</th>
<th>T(C)(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(C) (\subseteq_{0.3} D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T(C) (\subseteq_{0.7} E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T(F) (\subseteq_{0.8} G)</td>
<td>0.105</td>
<td>0.8</td>
<td>0.105</td>
<td></td>
</tr>
<tr>
<td>T(C) (\subseteq_{0.5} H)</td>
<td>(0.3 \times 0.7 \times 0.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(\bar{A}_1\) \(\bar{A}_2\) \(\bar{A}_3\) \(\vdots\) \(\bar{A}_8\)
 - \([0.105, 0.8, 0.105]\)
 - \([0.105, 0, 0]\)
 - \([0, 0.8, 0.105]\)
 - \([0, 0, 0]\)
Extensions of ABox and probabilities

\[
\begin{align*}
\mathbb{T}(C) &\subseteq 0.3\ D \\
\mathbb{T}(C) &\subseteq 0.7\ E \\
\mathbb{T}(F) &\subseteq 0.8\ G \\
\mathbb{T}(C) &\subseteq 0.5\ H
\end{align*}
\]

\[
\begin{array}{cccc}
\mathbb{T}(C)(a) & \mathbb{T}(F)(a) & \mathbb{T}(C)(b) \\
0.105 & 0.8 & 0.105 \\
0.3 \times 0.7 \times 0.5
\end{array}
\]

\[
\begin{align*}
\mathbb{P}\mathbf{A}_1 &= 0.105 \times 0.8 \times 0.105 \\
\mathbb{P}\mathbf{A}_2 &= 0.105 \times (1 - 0.8) \times (1 - 0.105) \\
\mathbb{P}\mathbf{A}_3 &= (1 - 0.105) \times 0.8 \times 0.105 \\
\mathbb{P}\mathbf{A}_8 &= (1 - 0.105) \times (1 - 0.8) \times (1 - 0.105)
\end{align*}
\]
Entailment

- Given $KB = (\mathcal{T}, \mathcal{A})$ and $p, q \in (0, 1]$
- $\mathcal{E} = \{\widehat{A_1}, \widehat{A_2}, \ldots, \widehat{A_k}\}$ set of extensions of \mathcal{A} whose probabilities are $p \leq P_1 \leq q, p \leq P_2 \leq q, \ldots, p \leq P_k \leq q$
- $\mathcal{T}' = \{\mathcal{T}(C) \sqsubseteq D \mid \mathcal{T}(C) \sqsubseteq r, D \in \mathcal{T}\} \cup \{C \sqsubseteq D \in \mathcal{T}\}$
- $KB \models_{\mathcal{ALC}+\mathcal{T}P} F$
 - if F is $C \sqsubseteq D$ or $\mathcal{T}(C) \sqsubseteq D$, if $(\mathcal{T}', \mathcal{A}) \models_{\mathcal{ALC}+\mathcal{T_{min}}} F$
 - if F is $C(a)$, if $(\mathcal{T}', \mathcal{A} \cup \widehat{A_i}) \models_{\mathcal{ALC}+\mathcal{T}} F$ for all $\widehat{A_i} \in \mathcal{E}$
- probability of F: $\mathbb{P}(F) = \sum_{i=1}^{k} P_i$
DLs $+ \ T$ and probabilities

Entailment

- Given $KB = (T, A)$ and $p, q \in (0, 1]$
- $E = \{\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_k\}$ set of extensions of A whose probabilities are $p \leq P_1 \leq q, p \leq P_2 \leq q, \ldots, p \leq P_k \leq q$
- $T' = \{T(C) \sqsubseteq D \mid T(C) \sqsubseteq rD \in T\} \cup \{C \sqsubseteq D \in T\}$
- $KB \models_{\mathcal{ALC} + T^p} F$
 - if F is $C \sqsubseteq D$ or $T(C) \sqsubseteq D$, if $(T', A) \models_{\mathcal{ALC} + T_{\text{min}}} F$
 - if F is $C(a)$, if $(T', A \cup \tilde{A}_i) \models_{\mathcal{ALC} + T} F$ for all $\tilde{A}_i \in E$
- Probability of F: $\mathbb{P}(F) = \sum_{i=1}^{k} P_i$
Entailment

- Given $\text{KB} = (\mathcal{T}, \mathcal{A})$ and $p, q \in (0, 1]$
- $\mathcal{E} = \{\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_k\}$ set of extensions of \mathcal{A} whose probabilities are $p \leq P_1 \leq q, p \leq P_2 \leq q, \ldots, p \leq P_k \leq q$
- $\mathcal{T}' = \{\mathcal{T}(C) \subseteq D \mid \mathcal{T}(C) \subseteq_r D \in \mathcal{T}\} \cup \{C \subseteq D \in \mathcal{T}\}$
- $\text{KB} \models_{\text{ALC}+\mathcal{T}P} F$
 - if F is $C \subseteq D$ or $\mathcal{T}(C) \subseteq D$, if $(\mathcal{T}', \mathcal{A}) \models_{\text{ALC}+\mathcal{T}_{\text{min}}} F$
 - if F is $C(a)$, if $(\mathcal{T}', \mathcal{A} \cup \mathcal{A}_i) \models_{\text{ALC}+\mathcal{T}} F$ for all $\mathcal{A}_i \in \mathcal{E}$
- Probability of F: $P(F) = \sum_{i=1}^{k} P_i$
DLs + T and probabilities

Entailment

- Given \(KB = (T, A) \) and \(p, q \in (0, 1] \)
- \(E = \{ \overline{A_1}, \overline{A_2}, \ldots, \overline{A_k} \} \) set of extensions of \(A \) whose probabilities are \(p \leq P_1 \leq q, p \leq P_2 \leq q, \ldots, p \leq P_k \leq q \)
- \(T' = \{ T(C) \sqsubseteq D \mid T(C) \sqsubseteq_r D \in T \} \cup \{ C \sqsubseteq D \in T \} \)
- \(KB \models_{\mathcal{ALC} + TP} F \)
 - if \(F \) is \(C \sqsubseteq D \) or \(T(C) \sqsubseteq D \), if \((T', A) \models_{\mathcal{ALC} + T_{\text{min}}} F \)
 - if \(F \) is \(C(a) \), if \((T', A \cup \overline{A_i}) \models_{\mathcal{ALC} + T} F \) for all \(\overline{A_i} \in E \)
- probability of \(F \): \(P(F) = \sum_{i=1}^{k} P_i \)
DLs + T and probabilities

Entailment

- Given $KB = (T, A)$ and $p, q \in (0, 1]$.
- $E = \{\overline{A_1}, \overline{A_2}, \ldots, \overline{A_k}\}$ set of extensions of A whose probabilities are $p \leq P_1 \leq q, p \leq P_2 \leq q, \ldots, p \leq P_k \leq q$.
- $T' = \{T(C) \sqsubseteq D \mid T(C) \sqsubseteq r, D \in T\} \cup \{C \sqsubseteq D \in T\}$.
- $KB \models_{\mathcal{ALC}+T^P} F$.
 - if F is $C \sqsubseteq D$ or $T(C) \sqsubseteq D$, if $(T', A) \models_{\mathcal{ALC}+T_{\min}} F$.
 - if F is $C(a)$, if $(T', A \cup \overline{A_i}) \models_{\mathcal{ALC}+T} F$ for all $\overline{A_i} \in E$.
- Probability of F: $P(F) = \sum_{i=1}^{k} P_i$.

Gian Luca Pozzato
DLs + T and probabilities

TBox

- PokemonCardPlayer ⊑ CardPlayer
- $T(\text{CardPlayer}) \sqsubseteq_{0.85} \neg \text{YoungPerson}$
- $T(\text{PokemonCardPlayer}) \sqsubseteq_{0.7} \text{YoungPerson}$
- $T(\text{Student}) \sqsubseteq_{0.6} \text{YoungPerson}$
- $T(\text{Student}) \sqsubseteq_{0.8} \text{InstagramUser}$

Inferences

- $T(\text{CardPlayer} \sqcap \text{Italian}) \sqsubseteq \neg \text{YoungPerson}$ is entailed in $\mathcal{ALC} + T^P$
- if $\mathcal{A} = \{\text{PokemonCardPlayer}(lollo), \text{Student}(lollo), \text{Student}(poz)\}$:
 - YoungPerson(lollo) has probability 70%
 - InstagramUser(poz) has probability 48%
DLs + T and probabilities

TBox

PokemonCardPlayer ⊑ CardPlayer

\[T(\text{CardPlayer}) \sqsubseteq_{0.85} \neg \text{YoungPerson} \]

\[T(\text{PokemonCardPlayer}) \sqsubseteq_{0.7} \text{YoungPerson} \]

\[T(\text{Student}) \sqsubseteq_{0.6} \text{YoungPerson} \]

\[T(\text{Student}) \sqsubseteq_{0.8} \text{InstagramUser} \]

Inferences

- \[T(\text{CardPlayer} \sqcap \text{Italian}) \sqsubseteq \neg \text{YoungPerson} \] is entailed in \[\mathcal{ALC} + T^P \]

- if \[\mathcal{A} = \{ \text{PokemonCardPlayer}(lollo), \text{Student}(lollo), \text{Student}(poz) \} \]:
 - \[\text{YoungPerson}(lollo) \] has probability 70%
 - \[\text{InstagramUser}(poz) \] has probability 48%
DLs + T and probabilities

New results

- New results in two directions:
 - with Antonio Lieto: semantics
 - probability as proportion:
 \[
 \frac{|\{x \in C^\mathcal{I} \mid x \notin (T(C))^\mathcal{I} \text{ and } x \in (\neg D)^\mathcal{I}\}|}{|C^\mathcal{I}|} \leq 1 - p
 \]
 - probability as degree of belief: distributed semantics inspired by DISPONTE (Bellodi, Cota, Riguzzi, Zese)
 - submitted at the special issue of CILC 2018
Probability of Exceptions and Typicality Reasoner

- Python implementation of the reasoning services provided by the logic $\mathcal{ALC} + T^p$
- Makes use of owlready2 to rely on HermiT
- Exploits the translation into standard \mathcal{ALC}
- Available at http://di.unito.it/pear
Basic ideas

- compute extensions \mathcal{A} of the ABox and corresponding alternative scenarios $\tilde{\mathcal{A}}_i$
 - very expensive...optimizations needed
- compute probabilities of each scenario
- select the extensions whose probabilities belong to a given range $\langle p, q \rangle$
- check whether a query F is entailed from all the selected extensions in the monotonic logic $\mathcal{ALC} + T$
PEAR relies on a polynomial encoding of $\mathcal{ALC} + \mathbf{T}$ into \mathcal{ALC} (Giordano, Gliozzi, Olivetti)

- exploits the definition of \mathbf{T} in terms of a Gödel-Löb modality \Box:
 - $\mathbf{T}(C)$ defined as $C \sqcap \Box \neg C$ where the accessibility relation of \Box is the preference relation $<$ in $\mathcal{ALC} + \mathbf{T}$ models
Beyond COCOS

Future works

- Reasoning in real application domains:
 - which range of probabilities?
- Extension to other DLs
- Learning of a knowledge base with DLs + T + probabilities
- Optimization of PEAR by the application of techniques introduced by (Alberti, Bellodi, Cota, Lamma, Riguzzi, Zese)
Any question?